Recall that your hypothesis is that these values are the fraction of atoms that are still radioactive after n half-life cycles. Record in the appropriate blanks.

[tex]0.5^{n}[/tex] means 0.5 raise to the power of n. "To the power of" means an action of multiplication of 0.5 to n times.
The different values of n are given in the table. Substituting these values:
For A:
n = 1 (given)
[tex]0.5^{n} = 0.5^{1} = 0.5[/tex]
For B:
n = 2 (given)
[tex]0.5^{n} = 0.5^{2} = 0.5\times 0.5 = 0.25[/tex]
For C:
n = 3 (given)
[tex]0.5^{n} = 0.5^{3} = 0.5\times 0.5\times 0.5 = 0.125[/tex]
For D:
n = 6 (given)
[tex]0.5^{n} = 0.5^{6} = 0.5\times 0.5\times 0.5\times 0.5\times 0.5\times 0.5= 0.015625[/tex]
For E:
n = 8 (given)
[tex]0.5^{n} = 0.5^{8} = 0.5\times 0.5\times 0.5\times 0.5\times 0.5\times 0.5\times 0.5\times 0.5= 0.00390625[/tex]
Hence, the values are:
A = 0.5
B = 0.25
C = 0.125
D = 0.015625
E = 0.00390625