Respuesta :

The given matrix equation is,

[tex] 1.5\left[\begin{array}{cc}x&6\\8&4\end{array}\right] +y\left[\begin{array}{cc}1&4\\3&2\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] [/tex].

Multiplying the matrices with the scalars, the given equation becomes,

[tex] \left[\begin{array}{cc}1.5x&9\\12&6\end{array}\right] +\left[\begin{array}{cc}y&4y\\3y&2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\
[/tex]

Adding the matrices,

[tex] \left[\begin{array}{cc}1.5x+y&9+4y\\12+3y&6+2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\ [/tex]

Matrix equality gives,

[tex] 1.5x+y=z\\
9+4y=z\\
12+3y=6z\\
6+2y=2 [/tex]

Solving the equations together,

[tex] y=-2\\
3y-1.5x=9\\
-1.5x=9+6\\
x=-10
[/tex]

We can see that the equations are not consistent.

There is no solution.

Answer:

Its 2 or C on edge

Step-by-step explanation: