Respuesta :
we can use the ideal gas law equation to find the number of moles of gas
PV = nRT
where P - standard pressure - 101 325 Pa
V -volume - 15.0 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - standard temperature - 273 K
substituting the values in the equation
101 325 Pa x 15.0 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 273 K
n = 0.670 mol
molecular mass of the gas can be calculated as follows
molar mass = mass / number of moles
= 55.50 g / 0.670 mol
molecular mass of gas is 82.8 g/mol
PV = nRT
where P - standard pressure - 101 325 Pa
V -volume - 15.0 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - standard temperature - 273 K
substituting the values in the equation
101 325 Pa x 15.0 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 273 K
n = 0.670 mol
molecular mass of the gas can be calculated as follows
molar mass = mass / number of moles
= 55.50 g / 0.670 mol
molecular mass of gas is 82.8 g/mol
Answer is: the molar mass of gas is 82.83 g/mol.
m(gas) = 55.50 g; mass of gas.
V(gas) = 15.0 L; volume of gas.
Vm = 22.4 L/mol; molar volume of gas on STP.
n(gas) = V(gas) ÷ Vm.
n(gas) = 15 L ÷ 22.4 L/mol.
n(gas) = 0.67 mol; amount of gas.
M(gas) = m(gas) ÷ n(gas).
M(gas) = 55.5 g ÷ 0.67 mol.
M(gas) = 82.83 g/mol.
m(gas) = 55.50 g; mass of gas.
V(gas) = 15.0 L; volume of gas.
Vm = 22.4 L/mol; molar volume of gas on STP.
n(gas) = V(gas) ÷ Vm.
n(gas) = 15 L ÷ 22.4 L/mol.
n(gas) = 0.67 mol; amount of gas.
M(gas) = m(gas) ÷ n(gas).
M(gas) = 55.5 g ÷ 0.67 mol.
M(gas) = 82.83 g/mol.