An ac generator has a maximum emf output of 155 v.
a. find the rms emf output.
b. find the rms current in the circuit when the generator is connected to a 53 ω resistor.

Respuesta :

a) For an ac generator, the rms value of the voltage is given by:
[tex]V_{rms} = \frac{V_0}{ \sqrt{2} } [/tex]
where [tex]V_0[/tex] is the peak value of the voltage.

For the generator in our problem, the peak value is [tex]V_0=155 V[/tex], therefore the rms value of the voltage is
[tex]V_{rms}= \frac{V_0}{ \sqrt{2} }= \frac{155 V}{ \sqrt{2} }=109.6 V [/tex]


b) We can find the rms current in the circuit by using Ohm's law, which is also valid when using the rms values of the current and the voltage:
[tex]I_{rms} = \frac{V_{rms}}{R} [/tex]
where R is the resistance conncected to generator. If we use [tex]R=53 \Omega[/tex], we find
[tex]I_{rms} = \frac{V_{rms}}{ R }= \frac{109.6 V}{53 \Omega} =2.07 A[/tex]
jushmk
Vp = 155 V
R = 53 ω

(a) RMS emf output

Vrms = 0.7071Vp = 0.7071*155 = 109.6 V

(b) RMS current
From ohm's law,
Vrms = IrmsR => Irms = Vrms/R = 109.6/53 = 2.07 Amps